Die Oberfläche von makecode.microbit.org/beta

Aufbau: Mini - Aufgabenreihe

TASKS – Einstieg

Einfache, kurze Tasks Fokus auf Input / Output, Microbit kennenlernen

1 – 6

7 - 10

TASKS – Erweiterung

Task, welche eine Kombination von Elementen erfordern Fokus auf Logik, einfache Algorithmik, Programmkonzepte

Problemstellung

Fokus auf Entwicklung eigener Umsetzungsvarianten / Problemlösestrategien

TASKS: Einstieg (Input / Output)

TASKS: Erweiterung (Programmlogik)

Variablen

TASK I: Der Welt Hallo Sagen

Knopf B: Smiley anzeigen P|-| 50

TASK

> Nach Knopfdruck Displayanzeige aktivieren / wechseln

EINSATZ VON

- > Integrierte Buttons A & B
- > Integrierte LED-Matrix
- > Bedingter Anweisung (Knopf)

Benötigte Blöcke

III zeige Zeichenfolge []

O wenn Knopf [] gedrückt

halte Animation an

TASK II: Pin-Kontakt (Bewässerungsmelder)

Kontakt Zeige Smiley

Benötigte Blöcke

III dauerhaft []

III zeige LEDs

• pin [] ist gedrückt

C während [] mache []

TASK

 Durch den Pinkontakt ändert sich die Displayanzeige von einem Anti-Smiley zu einem Smiley

EINSATZ VON

- > PIN-Kontakt
- > Schleife

TASK III: Externer Schalter (digitaler Input)

Externer Schalter:

Alle LEDs leuchten solange der Schalter gedrückt wird

TASK

Per externer Knopfdruck LED-Matrix ein- und ausschalten

EINSATZ VON

- > Integrierte Buttons A & B
- > Externer Schalter (digitaler Input)
- > Schleife

Benötigte Blöcke

III dauerhaft []

III Bildschirminhalt löschen

C während [] mache [] **x** [] = []

Ø digitale von Pin []

TASK IV: Diode ansteuern (digitaler Output)

TASK

> Per Knopfdruck LED ein- und ausschalten

EINSATZ VON

- > Integrierte Buttons A & B
- > Leuchtdiode (digitaler Output)

Benötigte Blöcke

• wenn Knopf [] gedrückt

Schreibe digitalen Wert von Pin [] auf []

TASK V: Lichtregler (analoger Input/Output)

Drehung Regler:

Steuert die Helligkeit der Leuchtdiode

HINWEIS:

Das kürzere Bein der Leuchtdiode wird an GND angeschlossen

TASK

 Drehung des Reglers steuert die Helligkeit der Leuchtdiode (Outputwert des Reglers = Inputwert der Diode)

EINSATZ VON

- > Potentiometer (analoger Input)
- > Leuchtdiode (analoger Output)

Benötigte Blöcke

dauerhaft []

Schreibe analogen Pin [] auf []

analoge Werte von Pin []

TASK VI: Musik

TASK

> Per Knopfdruck Musik abspielen

EINSATZ VON

> Buzzer

Benötigte Blöcke

• wenn Knopf [] gedrückt

Geginne Melodie [] Wiederhole []

TASK VII: Zähler

START: Zahl in Display auf 0

Zusatz: Minimalwert = 0

Knopf B:

Display +1

Maximalwert = 9

Zahl in

Zusatz:

SHAKE:

Zahl in Display = **Zufallszahl**

TASK

- > Eine Variable mit dem Namen «Nummer» wird generiert (Variablen → neue Variable anlegen)
- Je nach Knopfdruck wird der Wert der Variable erhöht oder reduziert
- > Ein «Shake» definiert die Variable zufällig neu (1–9)

EINSATZ VON

- > Integrierter Beschleunigungssensor
- > Variablen
- > Bedingte Anweisungen (Wenn Dann)
- > Zufallszahl

Benötigte Blöcke ■ beim Start

■ dauerhaft []

• wenn Knopf [] gedrückt

• wenn [] dann

■ ändere [Variable] auf []

■ []+[]
■ []-[]
■ wähle eine zufällige Zahl...

TASK VIII: Kompass

Drehen der Platine:

Je nach Richtung N, O, S oder W anzeigen

ACHTUNG:

Zu Beginn wird der Kompass des micro:bit kalibriert. Dazu drehen sie die Platine bis alle LEDs aufleuchten

P|-| 50

TASK

- Je nach Ausrichtung der Platine wird die Himmelsrichtung angezeigt
- > Die Ausrichtung wird in Grad gemessen und wird in einer Variable gespeichert
- O Grad entspricht Norden. «N» soll entsprechend zwischen 315° und 360° sowie zwischen 0° und 45° angezeigt werden

INHALTE

- > Integrierter Kompass
- > Variablen
- Erweiterte Bedingte Anweisung (Wenn – Dann – Ansonsten)
- > Logische Operatoren

Benötigte Blöcke

iii dauerhaft []
iii zeige Zeichenfolge []
Kompassausrichtung []
k wenn [] dann ansonsten []
iii [] und []
iii zige Zeichenfolge []

TASK IX: Sirene

TASK

- > Per Knopfdruck Sirene ein- und ausschalten
- Sirene bedeutet, dass die Leuchtdioden abwechselnd blinken

EINSATZ VON

- > Integrierte Buttons A & B
- Leuchtdiode (digitaler Output)
- > Schleifen
- > Variablen

Benötigte Blöcke

TASK X: Visueller Regler

P|-| 🥯

TASK

- Durch Drehung des Reglers wird die LED-Matrix gesteuert
- > Regler ganz links: nur 1 LED oben links aktiv
- > Regler ganz rechts: Alle LEDs aktiv

EINSATZ VON

- > Potentiometer (analoger Input)
- > LED Einzeloutput
- > Schleifen
- > Bedingten Anweisungen
- > Variablen
- > Arithmetische Operationen

Benötigte Blöcke

TASK Zusatz: Game Astroids

In jeder Spalte fallen nach einer Zufallszeit (0-5sec) Astroiden in der Y-Achse herunter

Erfolgreiches Ausweichmanöver: Punkte +1 Kollision mit Astroiden: Game Over P|-| 50

TASK

- Variablenwerte zu Begin initiieren (z.B. Punkte = 0, spiel_an = wahr)
- > Routine für Spielerbewegung entwickeln
- Routine f
 ür ersten (Y=0) fallenden Astroiden entwickeln
- > Kollisionsereignis entwickeln
- Routine f
 ür restliche Astroiden (Y=1 bis Y=4) übertragen

INHALTE

- > Einsatz von Spiel-Blöcken (z.B. Sprite)
- Einsatz von «Wenn Dann» Bedingungen
- Einsatz von Schleifen

Benötigte Blöcke (nur Spiel-Block)

💀 erzeuge Sprite an Position x: [] y: []

😳 [Variable] y

💀 [Variable] stelle [y] ein auf []

😔 [Variable] ändere [y] um 1

💀 setze Punktestand auf [] 🗧 💀 Spiel beendet

PROBLEMSTELLUNG: Mini Spiel

Variante A: Mini Spiel «Zeitgefühl» Variante A: Mini Spiel «Reaktionszeit»

TASK

 Mit den bisher erarbeiteten Möglichkeiten, ein eigenes Spielkonzept entwickeln und umsetzen

VORGABEN

- > Es ist ein 2-Spieler Spiel
- Das Programm zeigt am Schluss an, ob Spieler A oder B gewonnen hat
- Programmcode ist effizient und frei von Redundanzen

VARIANTEN

- Variante A Zeitgefühl: Spiel welches das Zeitgefühl (Abschätzen einer Zeitdauer) misst
- Variante B Reaktionszeit: Spiel welches die Reaktionszeit auf ein Ereignis/Impuls misst

Benötigte Blöcke

?